Quantum Monte Carlo on graphical processing units
نویسندگان
چکیده
Quantum Monte Carlo (QMC) is among the most accurate methods for solving the time independent Schrödinger equation. Unfortunately, the method is very expensive and requires a vast array of computing resources in order to obtain results of a reasonable convergence level. On the other hand, the method is not only easily parallelizable across CPU clusters, but as we report here, it also has a high degree of data parallelism. This facilitates the use of recent technological advances in Graphical Processing Units (GPUs), a powerful type of processor well known to computer gamers. In this paper we report on an end-to-end QMC application with core elements of the algorithm running on a GPU. With individual kernels achieving as much as 30× speed up, the overall application performs at up to 6× faster relative to an optimized CPU implementation, yet requires only a modest increase in hardware cost. This demonstrates the speedup improvements possible for QMC in running on advanced hardware, thus exploring a path toward providing QMC level accuracy as a more standard tool. The major current challenge in running codes of this type on the GPU arises from the lack of fully compliant IEEE floating point implementations. To achieve better accuracy we propose the use of the Kahan summation formula in matrix multiplications. While this drops overall performance, we demonstrate that the proposed new algorithm can match CPU single precision. © 2007 Elsevier B.V. All rights reserved. PACS: 07.05.Bx; 02.70.Ss; 02.60.Dc; 89.20.Ff
منابع مشابه
Efficient parallelization of perturbative Monte Carlo QM/MM simulations in heterogeneous platforms
A novel perturbative Monte Carlo mixed quantum mechanics (QM)/molecular mechanics (MM) approach has been recently developed to simulate molecular systems in complex environments. However, the required accuracy to efficiently simulate such complex molecular systems is usually granted at the cost of long executing times. To alleviate this problem, a new parallelization strategy of multi-level Mon...
متن کاملPerformance and Quality of Random Number Generators
Random number generation continues to be a critical component in much of computational science and the tradeoff between quality and computational performance is a key issue for many numerical simulations. We review the performance and statistical quality of some well known algorithms for generating pseudo random numbers. Graphical Processing Units (GPUs) are a powerful platform for accelerating...
متن کاملEfficient Bayesian inference in stochastic chemical kinetic models using graphical processing units
A goal of systems biology is to understand the dynamics of intracellular systems. Stochastic chemical kinetic models are often utilized to accurately capture the stochastic nature of these systems due to low numbers of molecules. Collecting system data allows for estimation of stochastic chemical kinetic rate parameters. We describe a well-known, but typically impractical data augmentation Mark...
متن کاملArchitectural Comparisons for a Quantum Monte Carlo Application
Recent technological advances have led to a number of emerging platforms such as multi-cores, reconfigurable computing, and graphics processing units. We present a comparative study of multi-cores, field-programmable gate arrays, and graphics processing units for a Quantum Monte Carlo chemistry application. The speedups of these implementations are measured relative to a multi-core implementati...
متن کاملOTC 27386 Accelerating Numerical Ice Engineering Tools Using GPGPU
C-CORE is engaged in understanding the iceberg and sea ice design loads needs of the energy sector. As the energy industry ventures into oceans with greater ice cover and more icebergs, there is a significant need for efficient engineering tools to plan and manage operations in exploration, production, and safety. Industry requires a range of scenarios for their risk assessments, where existing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Physics Communications
دوره 177 شماره
صفحات -
تاریخ انتشار 2007